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Abstract
Fire severity classifications have been used extensively in fire management 
over the last 30 years to describe specific environmental or ecological impacts 
of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire 
severity classifications need to be more objective, predictive, and ultimately more 
useful to fire management and planning. Our objectives were to (1) quantify the 
relationships between fuel loading and moisture characteristics of surface fuels 
and the temperature and energy produced during combustion, and (2) to produce 
a classification that summarized these relationships into unique, realistic classes 
of fire severity. Using computer simulation, we created 115,280 synthetic fuel 
beds with diverse compositions and moisture conditions and burned them using 
computer simulation with the First Order Fire Effects Model (FOFEM). Using 
average fire intensity, fire residence time, total fuel consumed, depth of soil heating, 
and temperature in the top 1 cm of soil, we created a nine-group classification that 
separated fire severity classes based first on soil heating, second on intensity and 
fire time, and third on fuel consumed. Fuel beds were correctly placed into the nine 
fire severity classes 98% of the time using subsets of the synthetic fuel beds.

Keywords: Computer simulation, fire effects, FOFEM, fuelbed, hierarchical 
clustering
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Predicting Fire Severity Using Surface 
Fuels and Moisture
Pamela G. Sikkink and Robert E. Keane

Introduction
Fire severity classifications have been used extensively in fire management over 

the last 30 years to address specific environmental or ecological impacts of fire on 
fuels, vegetation, wildlife, and soils in recently burned areas (Azuma et al. 2004; 
Boby et al. 2010; Carey et al. 2003; Jain et al. 2012). For example, managers and 
researchers have used fire severity classifications to evaluate prescribed fire suc-
cess (Ryan and Noste 1985), stratify post-fire vegetation and soil response (Parsons 
et al. 2010), and describe burn patterns (Carey et al. 2003). Severity classifica-
tions have also been used to assess rehabilitation potential (Kuenzi et al. 2008; 
Robichaud et al. 2003) and decide whether burn impacts can be mitigated on a 
landscape (Beschta et al. 2004; Robichaud et al. 2007a). They have been correlated 
with remotely sensed images to develop maps that delineate areas to target efforts 
to reduce erosion, plant seedlings, and restore native plants (Beschta et al. 2004; 
Miller et al. 2003; Parsons 2003). Patterns of fire or burn severity have also been 
used to delineate fire regimes (Heyerdahl et al. 2012; Morgan et al. 2001), link 
landscape patterns and scales of disturbance processes (Chuvieco 1999; Dillon et 
al. 2011; Hudak et al. 2007; Turner et al. 1994), assess post-fire vegetation recov-
ery and reestablishment (Díaz-Delgado et al. 2003; Lentile et al. 2007; Turner et 
al. 1999), and evaluate disturbance of wildlife habitat (Zarriello et al. 1995) and 
the effects of fire on species of concern (Kotliar et al. 2003). All of these fire and 
burn severity classifications are post-fire assessments that have some relationship 
to the response of interest, but little predictive power because they are (1) limited 
in scope; (2) inconsistent; (3) not directly tied to fire characteristics and/or (4) lack 
a distinct quantitative basis for each class.

The main problems with most current fire severity classifications are that they 
are tailored to meet the needs of a specific application and the data used to cre-
ate them have been reduced to highly subjective, simplistic classes. Specialized 
classifications collapse complex interactions between fire, fuels, biota, and the 
biophysical environment into an over-simplified and over-generalized three- to 
six-group ordinal scale classification. Most of the classifications are ultimately 
reduced to classes of “low,” “moderate,” or “high” that represent a synthesis of the 
complex and interacting effects of a fire (Ryan and Noste 1985). The advantage of 
these simple indices is that they integrate a variety of information and summarize 
it into succinct, intuitive categories useful to management. The disadvantage is 
that they are overly simplistic and rarely address all possible management con-
cerns that require an estimate of severity (Lutes et al. 2006). Subjective, simplistic 
classifications are difficult to teach. They are also difficult to use consistently in 
the field because individuals assess severity using qualitative or semi-quantitative 
evaluation criteria differently based on their previous experiences evaluating fire 
and fuels. Ultimately, most of these fire severity classifications have little predic-
tive power to describe potential fire severity before a site actually burns because 
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an explicit cause-and-effect relationship has not been developed between the fuels 
and the fires that consume them.

A fire severity classification should directly relate the interaction of fire, fuels, 
biota, and the biophysical environment. Ideally, empirical data should include a 
wide variety of fuel beds and moisture scenarios that, when burned, lead to values 
for heat production, burn time, consumption, and other fire effects that form an ob-
jective fire-severity continuum. Through robust statistical analysis, the continuum 
is partitioned into distinct classes based on fuel bed and moisture parameters. As 
new technologies become available and are adopted (e.g., high resolution remote 
sensing products, mechanistic simulation modeling, and innovative sampling tech-
niques), burn severity classifications will increasingly need to describe complex 
fire effects based on physical characteristics of a fire and quantitative assessment 
variables, much like those used by fire behavior and many other fields of ecology.

This study was conducted to (1) demonstrate a technique for developing future 
fire severity classifications that are compatible with developing technologies in 
fuels research and (2) to produce a classification comprised of unique, realistic 
classes that objectively relate fire and fuel characteristics to their associated fire 
effects. To meet these objectives, we used computer-simulated burning of real and 
synthetic fuel beds and examined the quantitative relationships between fuel char-
acteristics, moisture, fire intensity, and first-order fire effects. Our results were 
somewhat constrained by the underlying assumptions of our simulation model, but 
using simulation burning was the only practical method to effectively treat the full 
range of fuels and moistures required to build an effective classification. We de-
fined our fire severity classes by the degree of changes in the direct first-order fire 
effects, including the amount of fuels consumed, degree of change in vegetation 
and soil biota due to soil heating, and smoke production. Although the proposed 
classification is based solely on surface fuels, it can be used in fire planning or fuel 
treatments efforts with some simple precautions. We also suggest several ways to 
refine and improve this classification for fire managers.

Background

The terms burn severity, fire severity, and fire intensity have been confused 
among scientists and managers for many years (Jain 2004; Lentile et al. 2006). 
Burn severity and fire severity are often used interchangeably to describe the de-
gree of above- and below-ground organic matter consumption during a fire (Jain 
2004; Keeley 2009; National Wildfire Coordinating Group 2006). Fire or burn 
severity are also used as general terms for the degree of environmental change 
caused by fires or as a specific loss of organic matter or biomass above and be-
low ground that is caused by the burning process (Keeley 2009; National Wildfire 
Coordinating Group 2006). In contrast, the term fire intensity is used for units 
of heat and describes the physical combustion process (Byram and Nelson 1952; 
Rothermel 1972). This report uses the terms fire intensity in its traditional sense. 
We reserve burn severity to denote classifications created for remote sensing ap-
plications because the term has a long history of use in the remote-sensing field 
(Dillon et al. 2011; Lentile et al. 2006; Lentile et al. 2007). We use fire severity to 
denote the magnitude of fire-caused damage to vegetation and fuels and general 
descriptions of fire impacts, such as fire effects on soil (Simard 1991). We use the 
term surface fuels to encompass all fuels that lay above the mineral soil A horizon. 
Technically, duff would be a ground fuel (Anderson 1982; O’Brien 2004), which 
burns differently during the fire combustion process than litter and larger fuels; but 
for simplicity in writing, we chose to refer to all fuels in this study as surface fuels.
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Many fire and burn severity classification systems have been developed to 
describe specific fire effects using general categories of fire damage. However, 
these classifications are limited to qualitative descriptions of specific environmen-
tal effects associated with burning. For example, fire severity classifications have 
been created to describe fire-caused damage to coniferous forests (Bradley et al. 
1992; Schimmel and Granstrom 1996), aspen (Brown and DeByle 1987), and taiga 
(Foote 1983). Ryan and Noste (1985) created a general classification for fire ef-
fects focused on fire intensity and duration that was expanded to include spatial 
and temporal effects in boreal forests (Ryan 2002). Some describe fire effects spe-
cifically on tree crowns (Jain and Graham 2007); others specifically classify fire 
effects on soil (Huffman et al. 2001; Hungerford 1996; Jain et al. 2006; Lewis et 
al. 2006; Parsons 2003; Parsons et al. 2010; Tarrant 1956; Wells et al. 1979). Other 
severity classifications have been created for fire effects in vegetation and veg-
etation recovery after wildfire (Moreno and Oechel 1989; USDA 2010). Perhaps 
the most commonly used fire severity classification is the Composite Burn Index 
(CBI) that quantifies severity from soil color, vegetation reduction, and fuel con-
sumption (Key 2005; Key and Benson 1999).

Normalized Burn Ratio (NBR), and the related differenced NBR (dNBR) (Key 
and Benson 2006) and relativized dNBR (RdNBR) (Miller and Thode 2007), are 
commonly used to infer burn severity from remotely sensed images (Singh 1989). 
Often differences in reflectivity between pre-burn and post-burn landscapes are 
classified for severity based on how great those differences are and this has been 
related to specific vegetation responses (Brumby et al. 2001; Epting et al. 2005; 
Redmond and Winne 2001; Wang and Glenn 2009; White et al. 1996).

The sensitivity of CBI and NBR to severity measures have been assessed by 
Key (2006), Kasischke et al. (2008), Murphy et al. (2008), and De Santis and 
Chuvieco (2007), among others. CBI and NBR have been adjusted for new burn 
severity indices that include leaf area index (Boer et al. 2008), relativization of the 
NBR (Miller and Thode 2007), and the use of additional imagery including pre- 
and post-fire images (Norton et al. 2009; Robichaud et al. 2007b; van Wagendonk 
et al. 2004). While each of these tools are useful for obtaining a relative assessment 
of fire effects on a specific environmental feature or landscape, each is also limited 
in application because a physical measure of fire behavior (e.g., fire intensity) is 
not objectively related to a quantified fire effect caused by combustion of a specific 
fuel load.

In contrast to fire and burn severity classifications based on subjective, cat-
egorical, post-burn assessments described in the examples above, three severity 
classifications have been created using quantitative measures. Two were devel-
oped in British Columbia using duff plus slash consumption and/or depth of burn 
to assign fire severity (Feller 1998; Trowbridge et al. 1989). The third classification 
was developed in Spain; it used experimental burns to quantify soil temperatures 
and loss of biomass during burning of shrub ecosystems (Perez and Moreno 1998). 
Although all of these classifications have a quantitative component to their devel-
opment, none are based on the full range of fuels that would commonly be found 
in forest, shrub, and grassland ecosystems. None relate the fire intensity achieved 
during a burn directly to resulting fire effects, and none can be used to predict fire 
severity before a fire occurs.

Burning the hundreds of thousands of different fuel bed compositions needed 
to create an adequate classification that can predict burn severity is expensive and 
time consuming, and a major reason why few comprehensive fire severity clas-
sifications based on fuels exist. Linking the heat produced by a fuel bed with its 
fire effects requires instrumentation and manpower to gather pre-burn, concurrent, 
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and post-burn information on fuel biomass and moisture values, fire heat and resi-
dence time, and fire effects. Capturing the range of fire severity possible from 
the variation within fuels and fire effects requires many such instrumented burns. 
Before an objective fire severity classification could be developed, alternatives to 
actual burning had to be developed that could “burn” fuel beds using controlled 
inputs and conditions and that could output relevant characteristics of the fire and 
resulting fire effects. Fire models (i.e., algorithms that represent different burn 
conditions) have greatly improved our ability to understand the burning process 
(Albini and Reinhardt 1995; Linn et al. 2005; Rothermel 1972). Computer pro-
grams that model fuel combustion and fire effects, which are based on Albini’s 
(1976; 1994) pioneering work on the relationship between fire intensity and fuels, 
created the means for linking fire intensity, fuel characteristics, and fire effects. 
Because they are computer models, they can also be manipulated to output the 
specific variables required to evaluate the range of fuel bed compositions that are 
needed to create a comprehensive fire severity classification.

Methods
Fire Simulation

The First Order Fire Effects Model (FOFEM) was used to simulate fire behavior 
and effects for our two datasets (Keane et al. 2008; Reinhardt et al. 1997). FOFEM 
was selected over other models that predict fire effects because it (1) calculates soil 
heating to 13 cm (5 in) deep, (2) is limited to surface burns (i.e., does not simu-
late crown fires), and (3) uses a batch input file to simulate combustion in a large 
number of fuel beds at one time. In addition, we worked with the FOFEM pro-
grammers to modify the tool and output several customized variables, including 
four measures of fire intensity (mean intensity, median intensity, sum of intensity 
during a burn, and maximum intensity reached during a burn), the temperatures 
and durations of heating in each 1-cm thick soil layer, and the depth of the deepest 
soil layer reaching 60 oC and 275 oC (see Keane et al. 2008, http://frames.nbii.gov/
portal/server.pt/community/fofem/613).

Several assumptions were made for the simulation burns. Some were inherent 
to the FOFEM simulation program; others were made during data preparation. 
FOFEM assumes that all fuels within a fuel bed will burn; that is, there is no 
patchiness or variability to the burn (Reinhardt et al. 1997). FOFEM has no spatial 
or landscape component to its burns as would be inherent in wildfire or prescribed 
burns. FOFEM also allocates proportions of each fuel component to flaming and 
smoldering combustion depending on a moisture description assigned by the user; 
we assumed that our moisture conditions, which were assigned “wet” to “very 
dry” based on moisture scenario, were within the ranges assigned in FOFEM and 
were handled appropriately for each combustion type. As modelers, we assumed 
that FOFEM would pick the most appropriate algorithms for burning the fuels and 
that each fuel bed we created would burn (i.e., no fuel beds or moisture scenarios 
would be outside the range of FOFEM’s predictive algorithms). We assumed that 
FOFEM contained predictive algorithms that could realistically burn fuel beds for 
the full range of duff in our study although evidence has been found to the contrary 
(Hood et al. 2007). We know that the ranges of duff thickness and biomass are 
biased in FOFEM algorithms toward fuels of the interior west (Brown et al. 1985) 
and that many of our duff measures extend beyond these ranges. This probably 
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affected some class characteristics, but we do not know to what degree. Finally, 
we assumed that assigning the same moisture distribution for all fuel beds, and 
assigning rot percent to the 1000-hr fuels using only five categories instead of a 
continuum, would not adversely affect the burning or classification process.

FOFEM requires specific inputs on several climatic, soil, and moisture distri-
bution factors that were not an integral part of the datasets created or compiled 
for this study so we assigned the default values from FOFEM to these factors. In 
addition to the actual and synthetic fuel loadings and moistures by component, 
we added values within the program for burning season (summer), duff moisture 
distribution (even), region (interior west), soil type (coarse-silt), and fuel type (nat-
ural). FOFEM was run in batch mode and fires were simulated for 8,000 seconds 
to calculate the median. Settings for the FOFEM runs included a limit of 10% fire 
intensity under zero duff conditions and use of the original burn up time if duff 
was present.

Datasets

Two datasets were used to create and verify this fire severity classification for 
surface fuels. One dataset, the “synthetic dataset,” was computer generated and 
used exclusively to develop the classification; the simulated fuel beds that were 
generated for it are referred to as the “synthetic fuel beds.” The second dataset 
consisted of actual field data, which provided realistic limits on fuel loads for each 
of the synthetic fuel components and served as an independent dataset to verify 
the uniqueness of the classes created in the classification process. This dataset is 
referred to as the “actual dataset” and its fuel beds are called “actual fuel beds.” 
The fuel components comprising both the synthetic and actual fuel beds include 
the following commonly accepted U.S. size classes (Fosberg 1970):
•  Duff
•  Litter
•  Fine woody debris (FWD)

•  1-hr fuels: particles with diameters <0.64 cm (<0.25 in) in diameter (1 hr 
refers to the number of hours it takes debris of this size to dry enough to 
reach equilibrium moisture content.)

•  10-hr fuels: particles between 0.64 and 2.54 cm (0.25-1.00 in) in diameter
•  100-hr fuels: particles 2.54 to 7.62 cm (1-3 in) in diameter

•  Coarse woody debris (CWD)
•  1000-hr fuels consisted of fuel components >7.62 cm (>3 inches) in diam-

eter. This class included all logs. Rot categories were assigned to CWD 
during the fuel-bed creation process.

•  Live shrubs
•  Herbs

The following paragraphs describe the development of the synthetic and actual 
datasets, including a description of the variables added to each dataset to do the 
simulation burning.

Synthetic Dataset
The synthetic dataset was created by randomly assigning fuel loadings to each 

fuel component and systematically combining the eight fuel components into a 
synthetic fuel bed. All loadings and assignments were made using Visual Basic 
for Applications in Microsoft Access ©. Loading values were randomly assigned to 
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each fuel component from their respective loading ranges as described in Table 1. 
Coarse woody debris (CWD) values were assigned a random percent rot value 
within the systematic process to satisfy FOFEM input requirements (Reinhardt et 
al. 1997) and simulate more realistic field conditions for CWD. Foliage or branch-
es from tree sources were not included in the loading assignment process because 
they were not considered surface fuels. The values in Table 1 were initially derived 
for the fuel loading models (FLMs) developed by Lutes (2009) and they are cur-
rently used to map national fuel layers (U.S. Department of the Interior 2011). 
FLMs were developed from actual field data so they were ecologically based and 
resulted in realistic ranges for the fuel components. Because the fuel bed data 
used to create the FLMs came from a limited number of sample areas across the 
United States, however, we increased the range of FLM fuel loadings for our study 
by adding two to three additional ranges to each fuel component at the top end 
of each FLM range. This expanded our range of variability and at least doubled 
maximum loadings in the actual data set to include fuel beds that may not have yet 
been sampled. We did not evaluate whether all of the synthetic fuel beds that were 
created for this study actually existed in nature.

Distributing the fuels systematically into beds resulted in 11,528 individual 
fuel beds that contained fuel loading values for eight fuel components, a range of 
duff depths, and a variety of rot values for the CWD component. The fuel loads 
ranged from minimal to heavy loadings and the systematic assignment of variable 
values allowed us to limit the total number of fuel beds for analysis. We initially 
experimented with systematically increasing biomass for each component using 
a set loading for each fuel type instead of assigning random loadings within in-
tervals for each; however, many fuel beds with low biomass were duplicated and 

Table 1—Ranges of increasing biomass (kg m-2) and percent rot used to systematically create the fuel components of each 
synthetic fuel bed.

We created 11,528 simulated fuel beds using nested loop routines within Visual Basic for Applications (VBA). We defined 
upper and lower limits for each of the four major fuel components and percent rot according to study objectives; then we 
created intervals within those limits from which we generated random numbers for the biomass of each fuel component. 
Components were nested in order of: (1) litter biomass, 6 intervals; (2) coarse woody debris biomass, 9 intervals; 
(3) percent rot of coarse woody debris, 5 intervals; (4) duff biomass, 11 intervals; and (5) fine woody debris biomass, 4 
intervals. Herb and shrubs were randomly assigned biomass values for each fuel bed from within their respective interval. 
Fine woody debris was further subdivided into biomass values for 1-hr, 10-hr, and 100-hr fuels. To fit the input parameters 
of FOFEM, duff biomass was converted to duff depth using a duff density value. Several checks were made after the fuel 
components were combined into a fuel bed to eliminate combinations of fuels or characteristics that could not exist; for 
example, no rot percentage was assigned if there was no coarse woody debris.

Biomass intervals for each surface fuel component (kg m-2)

	 		  				    Coarse woody
			   Total fine	 Coarse			   decay/rot
Increment	 Duff	 Litter	 woody debris	 woody debris	 Herb	 Shrub	 (%)

    1	 0.00-0.01	 0-0.20	 0-0.53	 0-1.01	 0-2.02	 0-8.97	 0.00
    2	 0.01-0.42	 0.21-0.57	 0.54-6.74	 1.02-1.83			   20.00
    3	 0.43-1.11	 0.58-2.41	 6.75-22.42	 1.84-2.25			   40.00
    4	 1.12-2.97	 2.42-11.22	 22.43-44.84	 2.26-3.56			   60.00
    5	 2.98-4.23	 11.23-33.64		  3.57-6.34			   80.00
    6	 4.24-4.86	 33.65-67.25		  6.35-7.86
    7	 4.87-5.89			   7.87-22.42
    8	 5.90-8.44			   22.43-44.84
    9	 8.45-13.40			   44.85-89.67
    10	 13.41-22.42
    11	 22.43-78.47
    12	 78.48-156.92
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so many fuel beds were generated that computational times for statistical analysis 
and graphing were impractical. Alternately, assigning loadings or biomass by true 
random methods did not guarantee a wide range of fuel bed compositions as did 
the assignment of loadings within intervals. Assigning fuel loads by systematic in-
creases within defined intervals was ultimately the most practical method to insure 
a wide range of fuel loadings and a reasonable number of fuel beds for analysis 
and classification. The same rationale was used to limit the ranges of the synthetic 
fuel components to double those of the actual fuel beds. If we used a wider range of 
values for each component, more fuel beds would be created using the systematic 
process.

The two exceptions to assigning loadings using the FLM intervals were in the 
assignments of the fine-woody debris and shrub/herb components. Fine woody de-
bris (FWD) was not separated into individual components (i.e., 1-, 10-, and 100-hr 
fuels) within the FLMs, but the individual components were required by FOFEM 
for the simulation burn. To make these assignments, we randomly picked a total 
for FWD from the appropriate FWD intervals in Table 1; we then divided that 
number by two and selected random values for 1-hr and 10-hr components within 
this new limit. New 1-hr and 10-hr components were then subtracted from the total 
FWD with the remainder assigned to the 100-hr loading. We assigned shrub and 
herb loadings to each fuel bed using random values over a single range that was 
twice the loading values for these components that occurred in the actual data set 
(described in the next section).

Moisture values for the duff, 10-hr, 1000-hr, and soil were assigned to each of 
the 11,528 fuel beds using 10 different moisture scenarios (Table 2). The moisture 
scenarios were designed by managers from the western and northeastern United 
States, the Midwest, and Florida; they emulated different conditions that are used 
to guide wildfire and prescription-burn decisions around the country. By using sce-
narios with vastly different moisture criteria, we ensured that a range of fire effects 
were simulated. Ultimately, we generated 115,280 synthetic fuel beds (11,528 fuel 
beds x 10 moisture scenarios) for the classification process.

Actual Dataset
The actual data set was comprised of 4,046 fuel beds sampled from field sites 

throughout the contiguous United States. The field sites were all sampled using 
established sampling protocols. The data set was compiled by Lutes et al. (2009), 

Table 2—Moisture values (%) assigned to the synthetic and actual datasets before simulation burning with the First Order Fire Effects 
Model (FOFEM).

Scenarios were constructed for regions or areas based on input from fire managers in the western United States (West), northeastern 
United States (NE), Florida and West Virginia (FL), and South Dakota (SD) for prescribed burns (Prescribed) and wildfires (see 
Applicable areas column). Scenario G includes the settings used to create the original fuel loading models (FLMs) of Lutes et al. (2009).  
All moisture scenarios should be applicable across the United States and internationally.

	 10-H	 1000-H	 Duff	 Soil		  Examples of
Scenario	 moisture	 moisture	 moisture	 moisture	 Condition	 applicable areas

    A	 4	 10	 20	 5	 Very dry fuels, duff, and soil	 Wildfire West & NE
    B	 4	 20	 125	 5	 Dry fuels and soil with wet duff	 Prescribed West
    C	 6	 15	 50	 10	 Dry fuels with moderate duff moisture 	 West, very dry in  FL
    D	 8	 20	 100	 15	 Moderately dry fuels with wet duff 	 Dry FL, prescribed NE
    E	 8	 75	 75	 20	 Moderately dry fuels and duff, wet soil 	 Prescribed West, FL, & NE
    F	 8	 25	 175	 25	 Dry fuels, wet duff and wet soil 	 Prescribed FL & NE
    G	 10	 15	 40	 10	 Dry fuels , moderate duff moisture 	 FLM burn scenario
    H	 10	 20	 100	 15	 Moderately wet fuel and soil, wet duff 	 West, FL, NE; prescribed NE,FL
    I	 10	 20	 175	 25	 Wet fuels, duff, and soil	 Prescribed FL
    J	 12	 40	 35	 20	 Wet fuels and soil, dry duff 	 Averages for prescribed  in SD
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who used the fuel beds to create a fuels classification that would predict smoke 
particulate and soil heating when surface fuels burned. Fuel beds from the Fuel 
Characteristic Classification System (Ottmar et al. 2007; Prichard et al. 2006) were 
also embedded within the FLM analyses (Lutes et al. 2009). Each fuel bed con-
sisted of biomass values for litter, duff, 1-hr, 10-hr, 100-hr, and 1000-hr fuels; but 
a constant value was assigned to herb and shrub components. Like the synthetic 
dataset, fire behavior and effects were simulated for each of the fuel beds under 
the 10 moisture scenarios, resulting in a data set with 40,460 total fuel beds. For 
this study, the actual dataset fulfilled two functions: (1) it provided field values 
for the loads of each fuel component and (2) it served as an independent dataset 
to verify the severity classes developed with the synthetic dataset and validate the 
classification.

Data Analyses

Before classification analysis, we verified that we met two important objectives 
for the synthetic fuel beds, which were to (1) double the range of load values in 
the actual data set, and (2) create combinations of fuels that did not exist within 
the actual data set. Box plots were used to evaluate the ranges of each fuel type in 
the actual and synthetic data sets. The range of compositions and fuel ratios within 
the actual and synthetic fuel beds (objective 2) were tested using a piper diagram 
within Sigma Plot (Systat Software Inc. 2008).

Twenty-eight independent variables were available for statistical and classifica-
tion analysis from the FOFEM outputs including 14 fire effects (fuel consumption 
and soil heating) and 14 fire behavior variables (Table 3). These outputs were stored 
in each of the two datasets using a fuel-bed identification number. The identifica-
tion number contained a code letter for moisture scenario and a number relating 

Table 3—Outputs for each fuel bed after simulation burning using First Order Fire Effects Model (FOFEM). Variables used 
in cluster analysis are shown in bold.

Type	 Output	 Units	 Abbreviation for output 

Fire effect	 Fuel consumption for nine fuel components 	 kg m-2	 DuffC, LitC, DW1C, DW10C, DW100C, 
	 (e.g., Duff consumed = DuffC)		  HerC, ShrC.

	 Fuel consumption for downed woody 1000-hr	 kg m-2	 DW1kSndC, DW1kRotC 
	 fuels (DW1k), solid (Snd) and rotten(Rot)

	 Fuel consumption for crown canopy foliage 	 kg m-2	 FolC, BraC 
	 and branches (not used in this study)

	 Total biomass of all fuels consumed during 	 kg m-2	 TotCon 
	 combustion

	 Maximum temperature reached for various 	 oC	 S0 (temperate at surface), S1…… to 
	 soil depths		  S13 (temperature at 1 to 13 cm below  
				    surface)

	 Maximum depth to reach 60oC or 275oC	 cm	 SL60, SL275

	 Mineral soil exposure after burn	 %	 MSEPer

	 Reduction in duff depth	 cm	 DDRed

Physical properties	 Fire intensity measures (mean, median,	 Kw/m2	 FIAvg, FIMed, FIMax, FISum 
of fire during burn 	 maximum, and sum)

	 Fire intensity attributed to vegetation 	 Kw/m2	 FISHFB 
	 (S=shrub; H=herb; F=foliage; B=branch)

	 Duration of fire	 sec	 FTime

	 Duration of flames	 sec	 FlaDur

	 Duration of smoke	 sec	 SmoDur
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to the fuel bed (e.g., E11575 was fuel bed 11575 burned using moisture scenario 
E). All original fuel-bed compositions, moisture values, and FOFEM outputs were 
stored in the relational database to export the different combinations of variables 
selected for statistical analysis or classification procedures.

Several assumptions were made related to the classification process that af-
fected the final product, but they were assumptions that we felt were normal to 
make. We assumed that creating widely diverse fuel beds would produce the great-
est range of fire behavior and effects and represent the entire set of fuel beds in 
the United States. We assumed that current burning models (specifically FOFEM) 
were rigorous and progressive enough to provide relative, unbiased predictions; 
and we assumed that clustering the variability in fire characteristics generated from 
diverse fuel beds into a small number of classes would reduce redundancy across 
classes and provide an objective way to describe fire effects.

A variety of data exploration techniques were used to decide which FOFEM 
output variables would be most useful to create groups from the synthetic and 
actual data sets. Descriptive statistics were run within SAS (SAS Institute Inc. 
2008) on each of the moisture scenarios to explore means and standard deviations 
for output variables. Histograms and box plots were constructed to explore the 
fuel-bed distributions. QQ tests were performed on individual variables to test for 
normal distribution of the data and subjected to common transformations when 
found to be non-normally distributed. If data were not normally distributed, non-
parametric statistics were used to test differences in variables between moisture 
scenarios and between cluster groups. Correlation coefficients were computed in 
SAS using the Spearman’s rank and Pearson’s correlations on the input variables 
for the various run scenarios and the output variables from FOFEM used in clus-
ter analysis. Cutoff values for correlations using these two tests were 0.80 with 
those variables exceeding the cutoff eliminated from further analysis. Eliminated 
variables included flame duration and several measures of fire intensity among 
others. Kruskal-Wallis non-parametric one-way ANOVA tests were run in SAS to 
determine if each variable differed in means between moisture scenarios. Those 
variables that had significant differences between scenarios were considered more 
likely to show significant differences when all the moisture scenarios were com-
bined for the classification analysis. Differences were considered significant if 
p<0.05.

Creating Groups

Classification of the fuel beds was accomplished through agglomerative hierar-
chical cluster analysis using PROC CLUSTER and the Lance-Williams Flexible 
Beta method in the SAS statistical package (SAS Institute Inc. 2008). Eight 
FOFEM output variables were suitable to use for clustering each data set because 
they showed significant differences in FOFEM runs across all moisture scenar-
ios: average fire intensity (FIAvg in kw m-2), fire residence time (FTime, sec), 
total fuels consumed (TotCon, kg m-2), smoke duration (SmoDur, sec), maximum 
temperature reached at one centimeter below the surface (S1, oC), deepest soil 
depth to reach 60 oC (SL60, cm), duff depth (DuffDep, cm), and 1000-hr moisture 
(CWDMoist, %). Values for each of these outputs were standardized within SAS 
and the standardized values were used in all statistical analyses and clustering pro-
cedures. Raw values corresponding to these standardized values were only used to 
illustrate points on the cluster dendrograms and tables to make the diagrams easier 
to understand.
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Cluster analysis trials were run using three, four, and five of the eight poten-
tial variables in different combinations. Five variables (FIAvg, TotCon, FTime, 
S1, and SL60) were ultimately selected for hierarchical clustering because they 
(1) showed significant differences between moisture scenario runs using Kruskal-
Wallis comparisons (p-value <0.05); (2) represented a range of factors, including 
time, intensity, depth of burn, and consumption; and (3) could be consistently es-
timated in some way by managers on site after a fire. Group characteristics were 
tested for six, seven, and nine groups before the final cluster procedure was run to 
completion. For each group, means and standard deviations of the five variables 
were summarized to determine what the differences were between groups. Cubic 
Clustering Criterion, Pseudo-F and Pseudo-t-squared tests were also used within 
SAS to help assess the optimal number of clusters. In this paper, we use the terms 
clusters, classes, and groups to refer to the groups created during this hierarchical 
clustering process.

Verifying Groups

We tested burn severity class compositions using three methods to determine 
whether the classes created by the clustering procedure with the synthetic data 
were distinct enough to group the same way using different data or grouping tech-
niques. First, we analyzed the actual dataset using the same procedure used to 
cluster the synthetic data. Because clustering results are often different if data 
within a single data set are changed or removed (McCune and Grace 2002), we 
used an entirely new dataset as a strong test of whether the classes were unique 
and repeatable. Hierarchical cluster analysis of the actual data set was conducted 
with the same five variables and pruned to the same number of groups as the syn-
thetic data set to determine if the same variables were controlling the clustering 
of each (i.e., similar variables were controlling branching in each branch of the 
cluster dendrogram). Next, the same five variables used in cluster analysis were 
analyzed using classification and regression tree analysis (CART) on both the syn-
thetic and actual data sets. We compared the characteristics of classes created in 
the CART with the classes created in cluster analysis to see if the same variables 
were important to differentiating classes in both the synthetic and actual datas-
ets. CART results provided an independent evaluation of the cohesiveness of each 
class’s characteristics, as well as an alternative measure of classification error, be-
cause CART uses different procedures to create groups than hierarchical clustering 
(McCune and Grace 2002; Nisbet et al. 2009; Venables and Ripley 2002). Finally, 
we tested the repeatability of the classes with non-parametric discriminant analysis 
(DA) on the synthetic data set. Discriminant analysis compared clustered classes 
made using a subset of the synthetic data to the classification made using the entire 
synthetic dataset to give estimates of the percentages of misclassifications within 
each group (McCune and Grace 2002). We conducted discriminant analysis using 
the five standardized variables and cluster as the grouping variable. We used non-
parametric discriminant analysis in the SAS set with kernel = normal, r =0.3, and 
pool = yes. The value for the smoothing parameter r was computed as a weighted 
group mean based on the number of fuel beds in each cluster and on using five 
variables for the analysis as instructed in SAS.
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Results
Data Exploration

To create an objective fire severity classification that would be applicable to the 
wide variety of fuels and fuel-bed compositions found across the United States, 
we needed to create a dataset that expanded the known limits of fuel loadings 
and fuel-component combinations of previously sampled fuel-beds in the United 
States. Our goal was to double the range of each fuel component and examine the 
combustion effects over the expanded range. In the actual data set, the loads falling 
between the 25th to 75th percentiles on the box plot were less than 2.2 kg m-2 (10 T 
ac-1) for all components. Maximum duff load was less than 90 kg m-2 (400 T ac-1) 
(Fig. 1a). For our synthetic data set, the 25th to 75th percentiles fell between 3.4 to 
15.5 kg m-2 (15 and 70 T ac-1) (Fig. 1b). Maximum duff load was identical to the 
actual dataset but the value was considered unimportant because FOFEM treats 
extremely high duff loads identically during the simulation burns. All other fuel 
components met the objective of double the actual fuel biomass.

Figure 1—Range of biomass values in kg 
m-2 for each of the fuel types in (A) the 
actual data set, n = 4,046 (Lutes et al. 
2009); and (B) the synthetic data set, n 
= 11,528. CWD = Coarse-woody debris 
(1000-hr) fuels. Vegetation = total for 
shrub and herb loadings combined. 
Conversion factor for biomass in tons 
acre-1 = kg m-2 * 4.4609.
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In addition to expanding the load limits of each individual fuel component 
(Fig.  1), combining those components within the fuel beds into new proportions 
was also important to creating a fire severity classification that encompassed a wide 
variety of fuel beds, combustion characteristics, and fire effects. For example, a fuel 
bed consisting of 100% duff measured at 150 kg m2 creates different fire intensi-
ties and fire effects during simulated combustion than a fuel bed with 150 kg m-2 
of fuel comprised of 65 km2 duff, 10 kg m-2 FWD, and 75 kg m-2 CWD, for a ratio 
of 64%: 4%: 32% on the fuel bed, respectively. If our classification process lacked 
fuel beds with certain ratios of fuel components (e.g., there were no fuel beds with a 
25%, 50%, and 25% duff-FWD-CWD combination), our fire severity classification 
would not adequately represent fire effects that would result from fuel beds having 
this combination. Filling in missing proportions of fuel components during our data 
creation phase was important to ensuring that the maximum possible combinations 
of fuel-bed compositions were included in our burn simulations. As a result of the 
data creation process, gaps in the ratios of fuel components in the actual data (Fig. 
2a) appeared to be adequately covered in the synthetic data set (Fig. 2b). Many new 
proportions of fuel components were created to fill in the white (gap) areas of the 
actual dataset and only a small area exists in the high proportions of 10-hr and low 
proportions of 100-hr fuels that remain unfilled (Fig. 2, lower right corner).

Figure 2—Piper diagram showing proportion of each fuel 
component within individual fuel beds. (A) actual data set 
(n = 4046); (B) synthetic data set (n = 11528). Each dot on 
the piper diagram shows the makeup of one fuel bed; its 
position determined by percentage of each fuel type that 
is found within the fuel bed. The lower left triangle consists 
of the smallest fuels; the lower right, the largest. Each 
corner of the small triangles = 100% of the respective fuel 
component. The 1-hr and 10-hr fine fuels are combined 
on the lower left triangle so that the percentage of 
vegetation biomass (herbs and shrubs) can be included 
with the small fuels. The placement of a fuel bed on the 
upper diamond depends on where the composition falls 
within each of the two lower triangles. If all fuel within the 
bed consists of only duff, the dot for the bed falls on the 
extreme left of the lower triangle and is projected to the 
upper portion of the diamond along with the proportion 
of litter. Scale = 0 to 100% along each edge of the lower 
triangles and along each edge of the upper diamond.
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None of the fuel variables (Table 3) in the actual or synthetic data set were 
normally distributed, nor could they be made normally distributed with common 
transformations. Histograms for all eight fuel components were skewed to the left 
(i.e., concentrations of small values) and QQ plots were sigmoid in shape with 
long tails on each end. Histograms of data from the FOFEM outputs were also 
skewed to the left, although some had bimodal tendencies, and the QQ plots were 
sigmoid in shape with long tails on one or both ends. Correlation tests on the input 
data showed duff depth (DuffDep) and duff biomass (DuffBio) highly correlated 
with the 10-hr fuels and with each other. Correlations using the Spearman cor-
relation were 0.87, 0.88, and 1.0 (p < 0.0001). Pearson’s correlation tests on the 
standardized output from FOFEM simulation burning showed that S1 and SL60 
were highly correlated (0.87) as were S5 and SL60 (0.86, p < 0.0001) and S1 and 
S5 (0.91, p < 0.0001). These variables showed significant differences, however, 
when tested among the individual moisture scenario runs using Kruskal-Wallis 
Chi-squared tests (p < 0.0001).

Of the ten FOFEM outputs used to measure intensity, time, and total consump-
tion, almost all showed significant differences among the 10 moisture scenarios in 
both the actual and synthetic data sets (p < 0.0001). Only FIMax was not signifi-
cantly different (p < 0.55). Some moisture scenarios had similar burn characteristics 
for the soil variables (SL60 and S1), but they were still different enough to be 
highly significant using the non-parametric ANOVA tests (p < 0.001).

Cluster Analysis

Based on distinct divisions within the dendrogram, we found that a classifica-
tion of the synthetic dataset could contain two to 24 groups (Fig. 3). We found 
that the optimal number of groups ranged from four to 18 based on the Cubic 
Clustering Criterion, Pseudo-F, and Pseudo-t-squared tests. The clearest indication 
of the optimal number of groups came from the Pseudo-t-squared test, which indi-
cated seven to nine groups would be most appropriate, but we experimented with 
classifications ranging from six to 14 groups. Ultimately, we chose nine groups to 
use for the surface fuels classification (see Fig. 3, line indicating 9-group level), 
because they separated well on the dendrogram’s normal semi-partial R-squared 
value and could be differentiated on the basis of field characteristics for the fire 
and fuel beds. By determining why the dendrogram branched at each point (i.e., 
using means and ranges for each of the five analysis variables), we easily assigned 
differences in burn characteristics to nine groups; but found subsequent attempts 
at assigning surface fuel criteria to 14 groups using means and ranges was difficult 
(Fig. 3).

Means for the five FOFEM output variables used in the agglomerative cluster-
ing are shown by class in Table 4. Significant differences in the fire variables were 
found among the classes using Kruskal-Wallis non-parametric tests (p < 0.0001).  
The relationships between dendrogram branching and the five main fire effects 
used for the cluster process are shown in Figure 3. Along each branch of the den-
drogram, the dominant pre-burn fuel characteristics for each of the nine classes are 
shown in Figure 4.

The characteristics for each of the nine cluster classes are summarized in Tables 
5 and 6. The tables also include characteristics for additional fire effects from 
FOFEM outputs that were not used in the clustering process. The most impor-
tant variables to class formation from the synthetic dataset were soil heating, fire 
intensity and burn time, and a combination of burn time and total consumption. 
Temperature in the top 1 cm (0.4 in) of the soil horizon and the total depth of heat 
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penetration that reached lethal limits for living tissue (i.e., 60 oC/140 oF) define 
classes early in the process, but they were also highly correlated with each other 
because both reflect heat conducted in the same soil horizon. Classes 1, 7, and 8 
represented fuel beds that, when burned, resulted in an average predicted tempera-
ture >100 oC (212 oF) in the upper 1 cm of the soil surface and that reached lethal 
temperature for living tissue from 2 to 7 cm (0.75 to 2.75 in) deep (i.e., “deep 
burns”). Classes 2, 4, 5, 6 and 9 resulted from burns that did not reach lethal limits 

Table 4—Mean values (by class) of fire effects used in agglomerative clustering. The standard error for each mean is 
shown in parentheses. Differences among classes using the five variables were significant using Kruskal-Wallis tests  
(p < 0.0001).

		  Total fuels	 Average fire	 Soil depth	 Fire residence 	 Soil temp
		  consumed	 intensity	 reaching 60 oC	 time	  @ 1cm 	
CLUSTER		  (TotCon)	 (FIAvg)	 (SL60)	 (FTime)	 (S1)
or Class	 n	 kg m-2	 Kw m-2	 cm	 sec	 oC

    1	 12,664	 40.29  (0.21)	 156.81 (1.44)	 5.46 (0.01)	 3120.09 (12.49)	 207.37 (0.54)
    2	 20,936	 21.38 (0.12)	 199.24 (2.18)	 -0.44 (0.01)	 1542.38 (7.02)	 37.07 (0.15)
    3	 469	 37.89 (1.01)	 4518.43 (68.58)	 0.89 (0.11)	 74.87 (0.79)	 75.59 (3.46)
    4	 264	 55.16 (1.03)	 13199.96 (237.60)	 -0.02 (0.11)	 62.16 (0.32)	 47.19 (2.92)
    5	 22,468	 86.15(0.19)	 131.10 (0.33)	 -0.18 (0.01)	 7853.45 (2.55)	 42.01 (0.22)
    6	 31,092	 33.36 (0.08)	 69.31 (0.27)	 -0.68 (0.00)	 5192.68 (9.30)	 31.54 (0.10)
    7	 9,206	 72.19 (0.33)	 123.42 (0.52)	 6.25 (0.02)	 7438.45 (9.86)	 215.44 (0.61)
    8	 9,877	 31.70 (0.21)	 94.00 (0.85)	 2.53 (0.01)	 3672.49 (16.09)	 104.62 (0.29)
    9	 8,304	 78.93 (0.18)	 196.19 (1.47)	 -0.84 (0.00)	 3664.84 (17.81)	 26.76 (0.13)

Figure 3—Dendrogram showing the groupings of synthetic fuel beds based on outputs from the simulation burns in 
FOFEM. The cluster was run using Ward’s method and standardized variables for total fuels consumed (TotCon), 
average fire intensity (FIAvg), duration of fire (FTime), deepest soil layer to reach 60 ºC (SL60), and maximum 
temperature reached at 1 cm below the surface (S1). Additional variables that distinguish groups include temperature 
of soil layer 5 centimeters below the surface (S5) and flame duration (FlaDur). Each branch is labeled with its dominant 
characteristic(s). Numerical values are means for each division. The 9-group and 14-group divisions are designated by 
horizontal lines. N = 115,280 fuel beds.
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for organics at more than 2 cm deep and did not create temperatures >75 oC (167 
oF) in the upper 1 cm of soil (i.e., “shallow burns”). Classes 5 and 7 burned with 
relatively long duration (i.e., “Slow burns”) while Classes 3 and 4 were character-
istic of very short,”flashy” burns (Fig. 3, Table 5).

The mean fuel loads for each fuel type and the moisture conditions from the 
original fuel beds that correspond to each cluster class are summarized in Table 6. 
The range of loading values by fuel component and percent moisture values for 
each class are shown in Appendix A. Significant differences in fuel moistures and 
fuel compositions were found among all the cluster groups using Kruskal-Wallis 
non-parametric tests (p < 0.0001).

Visual examination of fuel bed distributions for three key fire variables shows 
that the clusters divide fairly well in three- dimensional space, although the sheer 
number of plots makes the distribution of some groups difficult to assess. Most 
groups are distinct (Fig. 5), but locating the full extent of Group 6 in the scatter-
plot is difficult. The scatterplot also shows that several of the groups span a range 
from shallow to deep burns within the same group, but others like Group 2 have 
a narrow range of burn depth (Fig. 5, lower center). Statistical summaries showed 
significant differences between the means of the five fire variables using Wilk’s 
Lambda (p < 0.000) and highly correlated values for SL60 and S1 (>0.86).

The effects of moisture on the classification process were complex (Fig. 6). 
Each cluster class contained fuel beds from all moisture scenarios. Classes 1 and 

Figure 4—Dendrogram showing the groupings of synthetic fuel beds based on the original fuel characteristics of the cluster 
groups. The cluster was run using Ward’s method and standardized variables for total fuels consumed (TotCon), average 
fire intensity (FIAvg), duration of fire (FTime), deepest soil layer to reach 60 ºC (SL60), and maximum temperature 
reached at 1 cm below the surface (S1). Original fuels and moisture characteristics include: duff biomass (DuffBio), duff 
depth (DuffDep), coarse woody debris biomass (CWDBio), coarse woody debris moisture (CWD moisture), 1-hr + 10-hr 
+ 100-hr grouped (Fine fuels), litter, and soil moisture. Each branch is labeled with the original fuel characteristic that 
is important to branching. Numerical values are based on means and range of values for each group. The nine-group 
division is designated by the horizontal line. N = 115,280.
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Table 5—Median values for characteristics in each burn severity class based hierarchical clustering of the synthetic dataset 
using all moisture scenarios. Cluster classes are arranged in order of decreased soil heating. -1 = surface heating only.

Fire effect	 7	 1	 8	 3	 2	 5	 4	 6	 9

Fuel consumed	 65.93	 38.15	 25.53	 32.59	 17.21	 80.90	 54.51	 33.87	 75.03 
kg m-2 (t ac-1)	 (294.1)	 (170.2)	 (113.9)	 (145.4)	 (76.8)	 (360.9)	 (243.2)	 (151.1)	 (334.7)

Soil depth  
that reached  
60oC (cm)	 6.0	 5.0	 3.0	 -1	 -1	 -1	 -1	 -1	 -1

Fire characteristic

Soil heating 
upper 1 cm (oC)	 209	 201	 101	 41	 28	 22	 20	 20	 20

Soil heating 
at 5cm (oC)	 70	 65	 49	 27	 23	 21	 20	 20	 20

Fire intensity	 116	 115	 72	 4373	 88	 125	 12839	 58	 153

Burn tme (sec)	 7995	 3225	 3825	 75	 1485	 7995	 60	 4875	 3885

Flame duration (sec)	 3180	 1140	 1095	 60	 300	 3810	 60	 1185	 1245

Smoke duration (sec)	 24225	 9975	 10110	 3795	 7365	 29430	 4088	 13890	 17040

Table 6—Median values for original (pre-burn) fuel loads and moisture percentages by cluster group.

Fuel component	 7	 1	 8	 3	 2	 5	 4	 6	 9

Duff biomass	 0.78	 1.23	 0.78	 3.34	 4.75	 5.83	 4.89	 6.28	 12.02 
kg m-2 (t ac-1)	 (3.5)	 (5.48)	 (3.5)	 (14.9)	 (21.2)	 (26.0)	 (21.8)	 (28.0)	 (53.6)

Duff depth 	 0.34	 0.54	 0.34	 1.50	 2.10	 2.60	 2.20	 2.80	 5.40 
cm (in)	 (0.13)	 (0.21)	 (0.13)	 (0.59)	 (0.83)	 (1.02) 	 (0.87)	 (1.10)	 (2.13)

Litter biomass	 4.46	 5.85	 1.95	 21.86	 1.39	 8.14	 46.52	 1.43	 41.31 
kg m-2 (t ac-1)	 (19.9)	 (26.1)	 (8.7)	 (97.5)	 (6.2)	 (36.3)	 (207.5)	 (6.4)	 (184.3)

Fine fuels biomass	 9.46	 8.79	 5.38	 0.04	 1.23	 9.89	 0.02	 4.60	 16.63 
kg m-2 (t ac-1)	 (42.2)	 (39.2)	 (24.0)	 (0.17)	 (5.5)	 (44.1)	 (0.1)	 (20.5)	 (74.2)

CWD biomass	 33.8	 2.20	 2.98	 3.81	 1.66	 40.1	 3.65	 5.76	 2.68 
kg m-2 (t ac-1)	 (150.8)	 (9.8)	 (13.3)	 (17.0)	 (7.4)	 (178.9)	 (16.3)	 (25.7)	 (11.9)

Moisture (%)

Duff 	 40	 40	 50	 75	 100	 100	 75	 100	 100

10H 	 8	 6	 8	 8	 8	 8	 8	 8	 8

CWD 	 15	 15	 20	 40	 20	 20	 40	 20	 20

Soil 	 10	 10	 10	 20	 20	 15	 20	 15	 1

7 had the most fuel beds burned under the driest moisture scenario (A). The most 
fuel beds from wettest scenarios (F and I) were found in clusters 2, 5, and 6. Class 
5 and 9 had approximately equal representation of all moisture scenarios; whereas 
the number of fuel beds burned under each scenario varied considerably within 
classes 1, 2, 6, and 7. Of the 10 moisture scenarios created for this study, two 
were almost identical in their maximum, minimum, and mean values for all of the 
FOFEM outputs (i.e., scenarios D and H). Two other pairs (G and J; and F and I) 
were so similar that we considered eliminating one of each pair to run subsequent 
statistical analyses. However, Kruskal-Wallis comparisons showed significant dif-
ferences among all the scenarios so we retained all of them.

The effect of fuel and soil moistures on depth of burn, fuel consumed, and smoke 
duration is shown in Fig. 6. Moisture scenario A, which is the driest scenario, 
had the deepest burns and high fuel consumption. The wettest scenarios (H and I) 
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predicted shallow burns and longer smoke durations for those fuels that could burn 
(i.e., depth >-1). Clusters 2 and 6 consistently plotted with shallow burn depths, 
low fuel consumption, and moderate smoke. Clusters 1, 7, 8, which predicted long, 
deep burns in cluster analysis (Fig. 3), consistently occurred in the upper portion 
of each moisture scenario but the amount of fuel consumed resulted in different 
spreads for the groups (Fig. 6 above 2 cm depth of burn). Scenarios with moist 
fuels and soil predicted little consumption but longer smoke if more fuels were 
consumed. Scenario E was perhaps the most interesting because all cluster groups 
were spread out along all three axes.

Class Verification

The uniqueness and consistency of the nine classes produced from the synthetic 
dataset was verified using three methods: cluster analysis of an independent data-
set (i.e., the actual dataset), classification and regression tree analysis (CART), and 
discriminant analysis (DA).

Verification Using an Actual Dataset
Agglomerative hierarchical clustering of the actual data set showed the same 

general branching patterns in the dendrogram as the synthetic data set. Both the 
synthetic and actual data sets had classes at the far right and left sides of the den-
drogram to create the difference between six and nine groups (Fig. 7). Initial 
clusters were divided on the same soil temperatures and burn depth variables as the 
synthetic data set. Subsequent divisions were also similar to synthetic data set, but 
the actual data set had much lower average fire intensities and total consumption 

Figure 5—Scatterplot of group distributions for the three variables explaining the most variation in the synthetic data set 
(FIAvg = 46.9%; FTime = 27.6%; SL60 = 19.4%). Groups were created by agglomerative clustering. The most variation 
in fire intensity occurs within groups 2, 3, and 4. Plot shows results from simulation burning of all fuel beds in all moisture 
scenarios (n = 115,280). FIAvg = average fire intensity (KW m-2), SL60 = soil depth (cm) that reaches 60°C, FTime = fire 
duration (sec).
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Figure 6—Scatterplots showing the variation in total consumed (kg m-2), depth of burn (cm), and smoke duration (seconds) 
for the 10 moisture scenarios described in Table 2 (n = 11528 fuel beds for each scenario). Each cluster is color coded 
to show the variation in abundance of fuelbeds from each group. Each moisture scenario contains members from all 
clusters. Kruskal-Wallis comparisons showed the moisture scenarios to be significantly different (p < 0.0001). For the 
three variables shown in these scatterplots, all were also significantly different among the scenarios (Kruskal-Wallis  
p < 0.0001). Surface burns are at 0 on the depth of burn axes and -1 indicates no burn.
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values because the ranges of fuel loading were more restricted. The main differ-
ences between the classification created with the actual data set and the synthetic 
data set occurred within the “deep burn” groups (right side of dendrogram, Fig. 3) 
where the actual field data contained only 1/10 of the surface fuels for total con-
sumption and fire times differed by ½ to ¾ that of the synthetic data set. Smoke 
duration was also important to dendrogram branching earlier in the actual data set 
than in the synthetic data set.

Verification with Classification and Regression Tree Analysis 
(CART)

CART split the burned fuel beds based on the standardized fire effect outputs 
differently than cluster analysis. Where depth of soil heating was most important 
in cluster analysis, fire time (FTime) was most important in CART for dividing the 
actual and synthetic data sets. For the synthetic data set, the difference between 
short- and long-burning fires created the initial split in classes (Fig. 8b); soil heat-
ing, either in the top 1 cm (0.4 in) of the soil horizon (Z_S1, right branch, Fig. 8) 
or in the depth of the soil horizon that reached lethal temperatures (Z-SL60, left 
branch, Fig. 8), was of secondary importance. In CART analysis of the synthetic 
data set, Classes 3 and 4 were not distinguished; both were characterized by few 
fuel beds in comparison to other groups and very high average fire intensities. 
CART analysis of both data sets also resulted in several classes (Classes 2,3,5,6 
and 7) being duplicated on opposite branches of the regression tree (Fig. 8). The 

Figure 7—Dendrogram showing the groupings of the actual fuel beds based on outputs from the simulation burns in 
FOFEM. The cluster was run using Ward’s method and standardized variables for total fuels consumed (TotCon), 
average fire intensity (FIAvg), duration of fire (FTime), deepest soil layer to reach 60 oC (SL60), and maximum 
temperature reached at 1 cm below the surface (S1). Additional variables that distinguish groups include temperature of 
soil layer 5 centimeters below the surface (S5) and smoke duration (SmoDur). Each branch is labeled with its dominant 
characteristic(s). Numerical values are means for each division. The 9-group and 14-group divisions are designated by 
the horizontal lines. N = 115,280.
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Figure 8—Classification and 
regression trees based on the 
nine classes created during 
hierarchical cluster analysis (A) 
actual data set (B) synthetic data 
set. Variables included total fuels 
consumed (TotCon) in kg m-2, fire 
time (FTime) in sec, temperature 1 
cm (0.4 in) below the soil surface 
(S1) in ºC, deepest soil depth 
(SL60) to reach 60 ºC (140 ºF) in 
cm, and the average fire intensity 
achieved during the burn (FIAvg) 
in Kw m-2. Standardized values 
of each variable were used in the 
analysis but the corresponding 
raw values were used as labels 
in this illustration. Terminal nodes 
are labeled with the class value 
from hierarchical agglomerative 
clustering.
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splits based on FTime failed to uniquely assign individual results to one single 
class within the synthetic data set because fuel beds on both sides of the first CART 
split burned for longer than 7,042 sec. Within R, the pruning rules for the CART 
tree required that the minimum number of observations in a node be 30 before a 
split is attempted and the split must decrease the overall lack of fit by 0.001. All of 
the classes from the cluster analysis had over 30 observations (Table 4).

Verification with Discriminant Analysis
Statistical summaries showed significant differences between the means of the 

five fire variables using Wilk’s Lambda (p < 0.0001) and highly correlated values 
for SL60 and S1 (>0.86). Five canonical discriminant functions showed how much 
variation in the data was explained by each of the fire variables. The first canonical 
discriminant function, and the most important, related to FIAvg. It had a canoni-
cal correlation (CC) of 0.935 and explained 46.9% of the variation in the data. 
The other significant canonical discrimination functions, in decreasing explana-
tory order, were FTime (CC 0.896 explaining 27.6% of the variation), SL60 (CC 
0.860, 19.4%), TotCon (CC 0.687, 6.1%), and S1 (CC 0.058, 0%). Of the original 
groupings found in cluster analysis, 97.9% were classified in the same groups us-
ing discriminant analysis resubstitution; 97.7% of fuel beds classified in the same 
groups as cluster analysis using discriminant analysis cross-validation (Table 7). 
The class with the greatest error in assignments was Class 2 (8.82%); classes 3, 4, 
7, and 9 all classified with <1% error compared to the cluster groups.

Table 7—Classification results from non-parametric discriminant analysis using standardized values for total consumed 
(TotCon), average fire intensity (FIAvg), fire time (FTime), maximum temperature in the upper 1-cm soil horizon (S1), and 
depth that reached 60 ºC in subsurface (SL60).

Tests of equality of the group means for these five variables using Wilkes Lambda showed the means were significantly 
different (p < 0.000). Eigenvalues for the first five canonical discriminant functions were 6.9 (explaining 46.9% of variance), 
4.0 (27.6%), 2.85 (19.4%), 0.895 (6.1%) and 0.003 (0%), respectively.

Predicted group membership using non-parametric discriminant analysis (percent)

	 CLUSTER	 1	 2	 3	 4	 5	 6	 7	 8	 9	 Total

Re-substituted a	 1	 98.18	 0	 0	 0	 0	 0	 0.43	 1.39	 0	 100
	 2	 0	 97.13	 0.02	 0	 0	 1.04	 0	 0.91	 0.89	 100
	 3	 0	 0	 100	 0	 0	 0	 0	 0	 0	 100
	 4	 0	 0	 0	 100	 0	 0	 0	 0	 0	 100
	 5	 0.06	 0	 0	 0	 97.42	 0.22	 0.47	 0.64	 1.19	 100
	 6	 0	 3.12	 0	 0	 1.62	 91.23	 0	 0.84	 3.19	 100
	 7	 0.26	 0	 0	 0	 0	 0	 99.73	 0.01	 0	 100
	 8	 0.35	 0.06	 0	 0	 0.05	 0	 0.12	 99.09	 0.32	 100
	 9	 0	 0.04	 0	 0	 0.58	 0.01	 0	 0.19	 99.18	 100
	 Total	 10.85	 18.49	 0.41	 0.23	 19.47	 24.84	 8.11	 9.18	 8.43	 100
	 Errord	 1.82	 2.87	 0	 0	 2.58	 8.77	 0.27	 0.91	 0.82	 2.01

Cross-validated b, c	 1	 97.58	 0.01	 0	 0	 0.02	 0	 0.74	 1.65	 0	 100
	 2	 0.03	 96.99	 0.04	 0	 0	 1.05	 0	 0.96	 0.93	 100
	 3	 0	 0.64	 99.15	 0.21	 0	 0	 0	 0	 0	 100
	 4	 0	 0	 0	 100	 0	 0	 0	 0	 0	 100
	 5	 0.07	 0	 0	 0	 97.25	 0.23	 0.53	 0.71	 1.22	 100
	 6	 0	 3.12	 0	 0	 1.64	 91.18	 0	 0.86	 3.19	 100
	 7	 0.51	 0	 0	 0	 0.04	 0	 99.44	 0.01	 0	 100
	 8	 0.57	 0.09	 0	 0	 0.05	 0	 0.13	 98.79	 0.37	 100
	 9	 0	 0.06	 0	 0	 0.58	 0.01	 0	 0.29	 99.06	 100
	 Total	 10.83	 18.47	 0.41	 0.23	 19.45	 24.83	 8.14	 9.21	 8.44	 100
	 Errord	 2.42	 3.01	 0.85	 0	 2.75	 8.82	 0.56	 1.21	 0.94	 2.29
a 97.99% of re-substituted cases correctly classified.
b 97.71% of cross-validated grouped cases correctly classified.
c Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all 

cases other than that case. 

d Error count estimates for classification variable (rate) expressed as percent.
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Summary of Validation Results
The results of the three validation methods can be summarized as follows:

1) The synthetic and actual datasets produced the same number of classes (Figs. 
3, 7).

2) Even though the actual dataset had fuel beds with less than half the biomass 
for each fuel component than the synthetic dataset, the clustering dendrogram 
showed essentially that the same fire variables were important to each major 
branch and at similar levels in the dendrogram. The limited ranges in biomass 
values resulted in lower temperatures and burn times that mainly affected the 
labeling of split branches more than the actual order or differences variable 
importance (Fig. 7).

3) CART created classes of fire severity based first on fire time (FTIME), which 
made comparison with methods that split first on soil heating (S60 and S1) 
difficult (Figs. 3, 8).

4) CART created 10 (11 in actual dataset) classes, but some of the classes were 
duplicated on opposing branches of the regression tree (i.e., Class 6) and 
Classes 3 and 4 were missing altogether (Fig. 8). Separation of Classes 1, 8, 
and 9 was incomplete because each of these groups contained fuel beds with 
fire times greater than 7,042 seconds but the groups reside only on the left side 
of the diagrams where fire times were less than 7,042 sec.

5) Discriminant analysis produced similar results to hierarchical clustering, 
but Class 6 had 8.82% classification error and Classes 2 and 5 each had 
approximately 3% of their total fuel beds misclassified (Table 7).

Discussion
We successfully created a fire severity classification that merged fire effects 

from surface fuel loadings with associated fire behavior for a wide range of 
moisture conditions. Using a classification process based on empirical data, the 
variance inherent in over 115,000 very different fuel beds was objectively distrib-
uted among nine unique, identifiable groups. Fuel beds were correctly placed into 
the nine fire severity classes 98% of the time using subsets of the synthetic fuel 
beds (Table 7) and independently verified using fuel loading data from real fuel 
beds (Fig. 7). More importantly, the classification seems to uniquely identify these 
classes in ways that are important to planning and management (Tables 5, 6) and 
presents groups of fire effects and fire behaviors that are realistically different and 
meaningful (Fig. 3, 4). Even though the classification was created with computer 
simulation, the creation of unique, realistic, and reproducible classes gave us confi-
dence that the classes would be useful predictors of fire severity from on-site fuels.

Evaluation of the Fire Severity Classification Process
Our main objective in this study was to present a methodology to create an 

objective fire severity classification based on fire behavior and effects that would 
represent loadings and combustion across a wide diversity of fuel beds and improve 
predictability of fire effects. We found this process to be quite straightforward: (1) 
find or create a large number of fuel beds, (2) find a mechanism to burn them, (3) 
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group the fuel beds together by the outputs they have in common, and (4) find a 
method to verify that the classes are uniquely identified and consistent.

Burning the real and synthetic fuel beds was the most problematic step in the 
classification process because the actual burning of so many diverse fuel beds on 
the landscape is impractical. Measuring effects that result from burning different 
vegetation types can also be problematic because each effect requires a different 
measurement during an actual burn. For example, measuring how deep a fire af-
fects in the soil horizon during burning would require one set of instrumentation 
but measuring fire residence time in the different fuel components would require 
quite another. For most fires, collecting these measurements and relating them to 
the physical properties of the fire is time consuming, costly, and labor intensive. 
During the past four decades, significant progress has been made in the develop-
ment of fire models that more realistically describe the physical aspects of fire and 
predict how different types of fuel beds burn (Anderson et al. 2006; Andrews 1986; 
Finney 2004; Parsons et al. 2011; Reinhardt and Keane 1998). These models make 
the simulation of fuel bed combustion more practical than using actual fire on the 
landscape and have paved the way for creating a basic classification based solely 
on fuels.

The main problems with the current burn simulation models is that (1) they have 
no spatial context that would vary fire effects based on the spatial arrangement of 
fuels on the ground (Reinhardt et al. 1997); (2) they cannot incorporate topography 
or wind, both of which are crucial to realistic fire severity values on the surface 
and in the soil; and (3) FOFEM, in particular, has been shown to underestimate 
duff consumption and fireline intensity in some fuel types (Hood et al. 2007). That 
said, it is more practical to simulate fuel bed combustion with these limited models 
than to use fire on the landscape to burn the large number of fuel beds needed to 
create an adequate classification that covers numerous possibilities of fuel compo-
nents and moisture combinations. Moreover, our severity classification is “tuned” 
to FOFEM, which means that we can approximate likely fire severity prior to burn-
ing using FOFEM if we can know or estimate likely fuel and soil moistures.

Grouping fire behavior and fire effects variables from burn simulations under 
different moisture scenarios was straightforward using the agglomerative hierar-
chical clustering. It was also the most objective method for grouping because it 
assured that the number of groups was determined by the similarities in the data 
and not by operator bias. The number of classes used for this study could easily 
have ranged from six to 20 based on the cluster optimization tests, but our analyses 
ultimately led us to a nine-group surface fuel classification that best represented 
several different types of fires and was also relevant to fire effects that can be ob-
served in the field. Constructing a classification based on more than nine classes 
was much more difficult because unique fire effects, intensities, and fire times were 
difficult if not impossible to distinguish between groups (Figs. 3, 4). Plotting the 
fuel beds by fire effect showed the same groups identified with cluster analysis 
plotting together on the scatterplot (Fig. 6) and the fire effects predicted within 
each scenario seemed reasonable. For example, very dry scenario A burned deeper 
and consumed more fuel than the wetter I or J scenarios, which had much less fuel 
consumed and often did not burn (i.e., depth of burn = -1).

Validating the classes proved to be challenging because the three different meth-
ods produced three different results, although the differences among techniques 
were not as great as expected. Some of the differences in verification results can 
be explained by the way the individual classification processes run. CART and 
DA use different approaches to dividing groups (McCune and Grace 2002). The 
missing classes 3 and 4 in CART and the arrangement of the tree could be due 
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to either the stopping rules (clusters 3 and 4 have small numbers of samples) or 
pruning rules that are based on the variability within and between groups or how 
much classification error remains. Why CART separated the fuel beds on fire time 
instead of depth of burned like the hierarchical clustering is not known for cer-
tain (order of variables was not a factor). Theoretically, fire time and depth of 
burn should be highly correlated, and we did find them significantly correlated 
with correlation analysis (Pearson correlation coefficient = 0.04, p < 0.0001). We 
also found FTime highly correlated with fire temperatures at depth (S1 and S5, 
p < 0.0001). Because soil heating and depth of burn are rate-limited processes, 
duration of burning or fire time should be much more important to creating fire 
effects than fire intensity, which make the CART classes additively informative to 
our fire severity classification.

Limitations of the Classification and Suggestions to  
Improve Predictability

Our classification can be compared only generally to other fire severity classifi-
cations that quantitatively describe fire effects in the soil horizon. Feller’s (1998) 
low fire severity classes from slash burning would correspond to the depths of 
burn <2 cm (0.75 in) on the left side of our dendrogram (Fig. 3). All of Feller’s 
other classes (moderate to very high) fall within the deeper burns on the right 
side of the dendrogram (classes 1, 7, and 8). There was no one-to-one correspon-
dence between his classification and ours. The classes developed by Trowbridge 
et al. (1989) using duff depth and total consumption of slash fuels are not read-
ily comparable to the biomass and consumption values for each fuel bed in our 
classification. Trowbridge et al. (1989) used a maximum of duff consumed; our 
classification focuses on the depth of the original duff and what fire effects burning 
that thickness of duff would cause. Both Trowbridge et al. (1989) and Feller (1988) 
focused on fire effects from burning slash piles. Our classification is based on a 
much broader range of fuel components and focuses on the diverse fuel types that 
would be found throughout the United States.

While the presented classification can be used in the field in its current form, 
there are several limitations that must be addressed when it is used. First, most for-
est and non-forest surface fuels are represented within this classification by size or 
origins, not by specific genera or species composition (e.g., feather moss, lichen, 
pine-needles or grass are not specifically incorporated in the fuel beds but may be 
considered as part of the herb or, when dried, litter classes). The classification does 
not, incorporate any tree canopy fuels or their associated fire effects into its design 
and it should not be used to predict fire severity within the canopy or tree strata. 
Second, although we feel that the fire variables used to construct the classification 
span the vital characteristics in fuel consumption—fire time and soil effects—we 
may have limited its usefulness by using only five fire variables and excluding 
other fire effects in its construction. Our rationale for excluding several FOFEM 
outputs, which we did explore during this process, was that these five showed the 
most promise for field applications and providing ecological differences. The ef-
fect of this decision can be tested in future work by classifying the datasets using 
predictors other than these five and comparing the results. Third, the BURNUP 
model in FOFEM used to simulate fuel bed combustion may inaccurately portray 
some combustion dynamics for simulated data because the fuel characteristics may 
be outside the limits of its algorithms or the model assumptions. The duff consump-
tion model is particularly problematic and needs refinement in all fire models that 
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use its algorithms. Carefully planned experiments in the lab or field to solve the 
thin-duff/heat insulator problem and the deep duff effects are critical to creating a 
better classification. Finally, managers who use this classification should be aware 
that the class characteristics will greatly benefit from verification. Verification 
will require measuring pre-burn fuel beds; then recording temperatures during the 
burn, fuel consumption, and fire effects at the exact points where the fuels were 
measured. Although it is impractical to observe the large number of fuel beds and 
range of fires represented within this classification due to economic, logistical, and 
methodological constraints, a class or subset of each group could be tested in the 
laboratory or field to verify our class characteristics. Because this classification 
is based on physical properties of fire, it can be explored or tested with carefully 
planned experiments and, to a limited extent, in the field to determine if the classes 
created with computer simulation reasonably reflect the fire effects for different 
intensities of fire or if they need refinement to match real situations. Such experi-
ments would also inform development of improved models linking fire behavior to 
fire effects, particularly if observations were spatially explicit and captured spatial 
heterogeneity in fuels and fires.

Ultimately, this classification represents the most complete, objective, empiri-
cal integration of fuels, moisture effects, and fire characteristics to date. It is most 
useful as a tool for predicting fire severity from pre-burn fuels and moisture condi-
tions. Exceptions to its use may be fuel beds with extremely thin or extremely thick 
duff that FOFEM may not model adequately at this time. Furthermore, this clas-
sification is not meant to be used in a post-burn environment where burning has 
destroyed surface fuels. Sometimes pre-fire conditions can be assessed from un-
burned areas within the burn, or areas adjacent to the burn, to provide insight into 
fuel consumption, soil heating, and fire intensity. Other times, indices from other 
studies can be used in conjunction with this classification to estimate how severely 
fire has affected parts of the landscape. Jain et al. (2012) have summarized some 
of the indices that can be used in a post-burn environment to estimate fire severity 
effects in the soil and on trees. Additional work will be needed to tie predicted with 
actual post-burn effects using experiments or prescribed burns as described above.

Summary
The future of fire severity work will lie in quantitative studies that extend the 

same classification procedure used with the surface fuels (i.e., create fuels, burn 
them, classify the effects, and verify classes) to other biotic and abiotic compo-
nents to form a complete picture of fire severity. In addition to the surface fuels, 
tree canopy consumption is an important fuel source that will need to be quantified. 
Physical effects due to the combustion process, such as ash production or nutrient 
changes, will also need to be quantified to create another piece of the fire severity 
picture. The physical properties of each of these types of fuels (e.g., their moisture 
content, depth, biomass, size and shape), biotic and abiotic characteristics, and the 
physical properties of the fire resulting from combinations of these fuels and biota 
burning on the landscape, have relationships that are observable, testable, and, ul-
timately, predictable. Exploring these relationships in quantitative terms presents 
one direction for future work in burn severity classification. Just as fire intensity, 
spread rates, and flame lengths are physical measures that have made fire behavior 
models more realistic, we feel that fire ecology critically needs a set of quanti-
tative variables that describe fire effects in terms of the physical characteristics 
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of a fire’s effect to make fire severity classifications more realistic and versatile. 
Consider, for example, how much more versatile percent tree mortality is to relate 
to fire characteristics like intensity or flame duration than a fire severity category of 
low, medium, or high. Quantitative values more effectively link fire effects to the 
flaming and smoldering combustion processes represented in models that link fire 
behavior and effects. Likewise, we need variables that are ecologically meaningful 
and that we can readily measure at multiple scales remotely and in the field (Hudak 
et al. 2007; Lentile et al. 2006, 2007). Addressing the issue of variability of burns 
and how that affects fire severity classes across those spatial scales will take an 
integrated approach by many fields of science, including soils, geology, forestry, 
and remote sensing, among others. The proposed classification is an important step 
toward describing the mechanisms of fire severity that can provide the flexibility 
needed for use across multiple scales, applications, and projects.

According to Ryan and Noste (1985), a fire severity classification should possess 
several key attributes. It should be (1) a meaningful index of ecological change; 
(2) broadly applicable; (3) useful for predicting fire effects moderately accurately; 
(4) applicable to all types of fires; (5) applicable to many vegetation types; (6) 
easy to use; (7) safely implemented (i.e., with post-fire observations); and (8) easy 
for managers, scientists, and others to compare and evaluate field observations 
with predicted results. The classification created in this study meets most of these 
criteria, with the possible exception of being applicable to all types of fires. It is 
not meant to apply to crown fires in forests, but it could be expanded to do so in 
the future using a similar developmental process to this surface fuel fire sever-
ity classification. Like the fire severity rating system created by Ryan and Noste 
(1985), this surface-fuel classification integrates pre-fire conditions, fire behavior, 
and fire effects. However, it adds new dimension to the classifications previously 
developed by Ryan and Noste (1985), Feller (1998), and Trowbridge et al. (1989) 
because it places quantitative values on the fuels, moistures, and fire characteris-
tics needed to produce specific fire effects. Its real strength is in the assessment 
of potential fire effects from pre-burn fuel variability and exploring the physical 
relationships with fire. Ultimately, it is just one step toward a more quantitative, 
objective, scalable approach to predicting fire severity from very accessible data, 
that is, the surface fuels and other on-site parameters.
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Appendix A—Ranges of fuel components and moisture 
characteristics for each class in the synthetic data set  
(N = 115,280).

Range of duff biomass within each of nine classes. Classes created by agglom-
erative clustering of 115,280 fuel beds and five variables. Box and whisker plots 
show the 25th percentile (lower edge of box), median (line within box), the 75th 
percentile (upper edge of box, extreme upper and lower values [whiskers from 
box], and outliers (circles).

A. Range of duff within each of the nine classes.

B. Range of litter within each of the nine classes. 

C. Range of 1-hr fuels within each of the nine classes.

D. Range of 10-hr fuels within each of the nine classes.

E. Range of 100-hr fuels within each of the nine classes.

F. Range of coarse woody debris values within each of the nine classes.

G. Range of duff moisture values within each of the nine classes for duff layers 
comprising each fuel bed.

H. Range of moisture values within each of nine classes for the 10-hr fuels com-
ponent of each fuel bed.

I. Range of moisture values within each of nine classes for the coarse woody debris 
fuels component of each fuel bed.

J. Range of moisture values within each of the nine classes for the soil moisture 
component of each fuel bed.



USDA Forest Service RMRS-RP-96.  2012.	 33

A. Range of duff within each of the nine classes. 

B. Range of litter fuels within each of the nine classes.
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C. Range of 1-hr fuels within each of the nine classes.

D. Range of 10-hr fuels within each of the nine classes.
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E. Range of 100-hr fuels values within each of the nine classes.

F. Range of coarse woody debris within each of the nine classes for duff layers 
comprising each fuel bed.
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H. Range of moisture values within each of nine classes for the 10-hr fuels 
component of each fuel bed.

G. Range of duff moisture values within each of the nine classes for duff layers 
comprising each fuel bed.
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J. Range of moisture values within each of the nine classes for the soil moisture 
component of each fuel bed.

I. Range of moisture values within each of nine classes for the coarse woody 
debris fuels component of each fuel bed.
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